metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1-(4-fluorobenzyl)pyridinium] bis(2,2-dicyanoethene-1,1-dithiolato- κ^2 S,S')nickelate(II)

Ai-Qun Zhou^a and Chun-Lin Ni^{b*}

^aHunan College of Information, Hunan, Changsha 410200, People's Republic of China, and ^bDepartment of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China Correspondence e-mail: ctgunicl@163.com

Received 3 November 2007; accepted 12 November 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.025; wR factor = 0.071; data-to-parameter ratio = 13.1.

A new ion-pair complex, $(C_{12}H_{11}FN)_2[Ni(C_4N_2S_2)_2]$ or (FBzPy)₂[Ni(imnt)₂], where FBzPy is 1-(4-fluorobenzyl)pyridinium and imnt is 2,2-dicyanoethene-1,1-dithiolate, was obtained by the direct reaction of NiCl₂, K₂(imnt) and (FBzPy)⁺Br⁻ in H₂O. The asymmetric unit contains a $[FBzPy]^+$ cation and one half of the Ni $[imnt]_2^{2-}$ anion. The Ni^{II} ion lies on an inversion centre and adopts a square-planar configuration. In the [FBzPy]⁺ cation, the benzene and pyridinium rings make a dihedral angle of $77.2 (3)^{\circ}$. In the crystal structure, C-H···N hydrogen bonds and π - π interactions [3.450 (3) Å] between ethenyl groups of the $Ni[imnt]_2^{2-}$ anion and the pyridinium ring of the cation generate a three-dimensional network.

Related literature

For related Ni(imnt) $_{2}^{2-}$ complexes, see: Liu *et al.* (1996, 2006); Feng et al. (2007). For related literature, see: Canadell (1999): Ni et al. (2007); Nishijo et al. (2003); Ren et al. (2002); Robertson & Cronin (2002); Xie et al. (2002).

Experimental

Crystal data

(C12H11FN)2[Ni(C4N2S2)2] $M_r = 715.51$ Triclinic, P1 a = 7.085 (1) Å b = 9.048 (1) Å c = 13.182(1) Å $\alpha = 71.68(1)$ $\beta = 74.93 (1)^{\circ}$

 $\gamma = 82.11 \ (1)^{\circ}$ V = 773.19 (15) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 0.94 \text{ mm}^{-1}$ T = 291 (2) K $0.30 \times 0.25 \times 0.20 \text{ mm}$

Data collection

```
Bruker SMART APEX CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2004)
  T_{\min} = 0.766, \ T_{\max} = 0.836
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	205 parameters
$wR(F^2) = 0.071$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
2695 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

4185 measured reflections

 $R_{\rm int} = 0.009$

2695 independent reflections

2568 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond g	eometry (A, °)
-----------------	---------------	---

$\begin{array}{ccc} C12 - H12 \cdots N1^{i} & 0.93 \\ C15 - H15 \cdots N2^{ii} & 0.93 \end{array}$	2.59	3.471 (3)) 157
	2.60	3.337 (3)) 136

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Project (grant No. 2007B011000008) from Guangdong Science and Technology Department and the President's Science Foundation of South China Agricultural University (grant No. 2005 K092) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2509).

References

- Bruker (2000). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Canadell, E. (1999). Coord. Chem. Rev. 185-186, 629-651.
- Feng, C.-W., Li, X.-R., Hou, Y. & Ni, C.-L. (2007). Acta Cryst. E63, m1762.
- Liu, M.-G., Li, X.-Y., Lin, L.-F. & Ni, C.-L. (2006). Acta Cryst. E62, m2919m2921.
- Liu, S. G., Liu, Y. Q., Li, Y. F. & Zhu, D. B. (1996). Synth. Met. 83, 131-140.

Ni, C. L., Zhou, J. R., Tian, Z. F., Ni, Z. P., Li, Y. Z. & Meng, Q. J. (2007). Inorg.

- Chem. Commun. 10, 880-883. Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2003). Synth. Met. 133-134, 539-542.
- Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S. & Hu, C. J. (2002). Inorg. Chem. 41, 5686-5692.
- Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346-2347.

supplementary materials

Acta Cryst. (2007). E63, m3084 [doi:10.1107/S160053680705814X]

Bis[1-(4-fluorobenzyl)pyridinium] bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S$,S')nickelate(II)

A.-Q. Zhou and C.-L. Ni

Comment

2,2-Dicyanoethene-1,1-dithiolate (imnt) or 1,2-dicyanoethene-1,2-dithiolate (mnt) transition metal complexes have attracted cosiderable interest in molecular materials research (Liu *et al.*, 1996; Robertson & Cronin, 2002; Ni *et al.*, 2007; Ren *et al.*, 2002; Nishijo *et al.*, 2003; Xie *et al.*, 2002; Canadell, 1999). Our studies have been focused on the design, preparation, and investigation of some new salts that based on the molecular architecture of Ni(imnt)₂²⁻ anions because the topology and the size of the counterions used with Ni(imnt)₂²⁻ anion play an important role in tuning the stacks of anions and cations (Liu *et al.*, 1996; Liu *et al.*, 2006; Feng *et al.*, 2007).

The asymmetric unit of the title compound consists of one $[FBzPy]^+$ cation and one-half of Ni(imnt)₂ anion located on an inversion center; the Ni^{II} ion lies on an inversion centre. The NiS₄ core exhibits a square-planar configuration, with Ni—S distances of 2.2058 (5) and 2.2133 (5) Å. The S1—Ni1—S2 bond angle within the four-membered ring (Ni1/S1/C1/S2) is 78.80 (2)°. Atoms N1 and N2 of the $-C\equiv N$ groups deviate from the Ni1/S1/C1/S2 plane by 0.607 (3) Å and 0.174 (3) Å, respectively. The $[FBzPy]^+$ cation adopts a conformation where both the benzene and pyridinium rings are twisted with respect to the N3/C11/C10 reference plane with dihedral angles of 97.7 (2)° and 95.6 (3)°, respectively. The benzene and pyridinium rings make a dihedral angle of 77.2 (3)°. The F atom deviates from the benzene plane by 0.024 (3) Å.

In the crystal structure, C—H…N type hydrogen bonds (Table 1) and π - π interactions are observed between cations and anions. The π - π interaction is observed between ethenyl groups of the Ni(imnt)₂²⁻ anion and the N3ⁱ/C12ⁱ—C16ⁱ [symmetry code: (i) x, -1 + y, z] ring of the cation, with the distance between atom C2 and the centroid of the ring being 3.492 (3) Å. The above interactions generate a three-dimensional network structure (Fig 2).

Experimental

The title compound was prepared by the direct reaction of NiCl₂·6H₂O (0.24 g, 1 mmol), K₂(imnt)·H₂O (0.48 g, 2 mmol) and (FBzPy)⁺Br⁻ (0.54 g, 2 mmol) in H₂O (50 ml). Brown crystals were obtained by slow evaporation of a CH₃CN solution at room temperature over two weeks.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with $U_{iso} = 1.2 U_{eq}$ (parent atom).

Figures

Fig. 1. The cation and anion of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation (2 - x, -y, 1 - z).

Fig. 2. The crystal packing of the title compound, viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

Bis[1-(4-fluorobenzyl)pyridinium] bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Crystal data	
$(C_{12}H_{11}FN)_2[Ni(C_4N_2S_2)_2]$	Z = 1
$M_r = 715.51$	$F_{000} = 366$
Triclinic, PT	$D_{\rm x} = 1.537 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.085 (1) Å	Cell parameters from 3505 reflections
b = 9.048 (1) Å	$\theta = 2.4 - 29.5^{\circ}$
c = 13.182 (1) Å	$\mu = 0.94 \text{ mm}^{-1}$
$\alpha = 71.68 \ (1)^{\circ}$	T = 291 (2) K
$\beta = 74.93 \ (1)^{\circ}$	Block, brown
$\gamma = 82.11 \ (1)^{\circ}$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
$V = 773.19 (15) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD diffractometer	2695 independent reflections
Radiation source: fine-focus sealed tube	2568 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.009$
T = 291(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -8 \rightarrow 6$
$T_{\min} = 0.766, T_{\max} = 0.836$	$k = -10 \rightarrow 10$
4185 measured reflections	$l = -15 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained

$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.045P)^2 + 0.1686P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
2695 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
205 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Ni1	1.0000	0.0000	0.5000	0.03971 (11)
S1	0.87140 (6)	-0.02721 (5)	0.67579 (3)	0.04361 (12)
S2	0.86668 (7)	0.23756 (5)	0.49460 (3)	0.04755 (13)
N1	0.7048 (3)	0.1351 (2)	0.91290 (14)	0.0747 (5)
N2	0.6279 (3)	0.54849 (19)	0.63808 (14)	0.0611 (4)
N3	0.33540 (19)	0.96970 (15)	0.76440 (11)	0.0391 (3)
F1	-0.34351 (17)	0.52632 (13)	0.90040 (10)	0.0665 (3)
C1	0.8128 (2)	0.17017 (19)	0.63538 (12)	0.0376 (3)
C2	0.7406 (2)	0.25975 (19)	0.70595 (13)	0.0398 (3)
C3	0.7188 (3)	0.1919 (2)	0.82093 (14)	0.0479 (4)
C4	0.6808 (2)	0.4202 (2)	0.66752 (13)	0.0440 (4)
C5	0.1503 (3)	0.64193 (18)	0.78041 (13)	0.0442 (4)
Н5	0.2537	0.6311	0.7225	0.053*
C6	-0.0245 (3)	0.57681 (19)	0.79671 (14)	0.0472 (4)
Н6	-0.0406	0.5234	0.7500	0.057*
C7	-0.1730 (3)	0.59274 (19)	0.88309 (14)	0.0474 (4)
C8	-0.1575 (3)	0.6725 (2)	0.95277 (14)	0.0516 (4)
H8	-0.2619	0.6824	1.0104	0.062*
C9	0.0174 (3)	0.7379 (2)	0.93532 (13)	0.0486 (4)
Н9	0.0310	0.7926	0.9818	0.058*
C10	0.1731 (2)	0.72308 (17)	0.84929 (12)	0.0398 (3)
C11	0.3599 (3)	0.8020 (2)	0.82662 (15)	0.0469 (4)
H11A	0.3924	0.7936	0.8954	0.056*
H11B	0.4663	0.7510	0.7843	0.056*
C12	0.2810 (3)	1.0763 (2)	0.81891 (15)	0.0493 (4)
H12	0.2663	1.0465	0.8947	0.059*
C13	0.2468 (3)	1.2291 (2)	0.76345 (17)	0.0586 (5)
H13	0.2076	1.3029	0.8017	0.070*
C14	0.2701 (3)	1.2737 (2)	0.65203 (17)	0.0556 (5)
H14	0.2482	1.3777	0.6140	0.067*
C15	0.3260 (3)	1.1639 (2)	0.59723 (15)	0.0551 (5)
H15	0.3426	1.1920	0.5214	0.066*
C16	0.3573 (3)	1.0107 (2)	0.65574 (14)	0.0510 (4)
H16	0.3941	0.9349	0.6191	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.04242 (18)	0.04293 (18)	0.02804 (16)	0.00353 (12)	-0.00639 (12)	-0.00631 (12)
S1	0.0494 (2)	0.0426 (2)	0.0298 (2)	0.00407 (17)	-0.00642 (16)	-0.00304 (16)
S2	0.0599 (3)	0.0461 (2)	0.0271 (2)	0.00719 (19)	-0.00731 (18)	-0.00378 (17)
N1	0.1176 (16)	0.0689 (11)	0.0361 (9)	-0.0076 (11)	-0.0206 (9)	-0.0101 (8)
N2	0.0720 (11)	0.0493 (10)	0.0542 (10)	0.0051 (8)	-0.0146 (8)	-0.0078 (7)
N3	0.0380 (7)	0.0403 (7)	0.0360 (7)	0.0011 (5)	-0.0115 (5)	-0.0062 (6)
F1	0.0581 (7)	0.0592 (7)	0.0736 (8)	-0.0097 (5)	-0.0123 (5)	-0.0073 (6)
C1	0.0335 (7)	0.0442 (8)	0.0311 (8)	-0.0003 (6)	-0.0091 (6)	-0.0048 (6)
C2	0.0410 (8)	0.0451 (9)	0.0301 (8)	0.0003 (7)	-0.0100 (6)	-0.0062 (7)
C3	0.0599 (10)	0.0487 (9)	0.0353 (9)	-0.0026 (8)	-0.0115 (8)	-0.0123 (7)
C4	0.0454 (9)	0.0506 (11)	0.0350 (8)	-0.0019 (8)	-0.0084 (7)	-0.0120 (7)
C5	0.0521 (9)	0.0384 (8)	0.0366 (8)	0.0107 (7)	-0.0087 (7)	-0.0101 (7)
C6	0.0591 (10)	0.0372 (8)	0.0454 (9)	0.0052 (7)	-0.0166 (8)	-0.0119 (7)
C7	0.0506 (9)	0.0356 (8)	0.0463 (10)	0.0012 (7)	-0.0135 (8)	0.0018 (7)
C8	0.0563 (10)	0.0501 (10)	0.0354 (9)	0.0035 (8)	0.0000 (7)	-0.0058 (7)
C9	0.0647 (11)	0.0454 (9)	0.0327 (8)	0.0038 (8)	-0.0096 (7)	-0.0116 (7)
C10	0.0494 (9)	0.0317 (7)	0.0328 (8)	0.0068 (6)	-0.0136 (7)	-0.0022 (6)
C11	0.0509 (10)	0.0424 (9)	0.0454 (9)	0.0089 (7)	-0.0191 (8)	-0.0081 (7)
C12	0.0597 (11)	0.0470 (10)	0.0401 (9)	-0.0018 (8)	-0.0135 (8)	-0.0103 (8)
C13	0.0717 (13)	0.0427 (10)	0.0593 (12)	0.0000 (9)	-0.0156 (10)	-0.0129 (9)
C14	0.0527 (10)	0.0438 (10)	0.0616 (12)	-0.0072 (8)	-0.0185 (9)	0.0031 (9)
C15	0.0567 (11)	0.0613 (11)	0.0378 (9)	-0.0132 (9)	-0.0116 (8)	0.0033 (8)
C16	0.0557 (10)	0.0561 (10)	0.0381 (9)	-0.0030 (8)	-0.0068 (8)	-0.0128 (8)

Geometric parameters (Å, °)

Ni1—S1 ⁱ	2.2058 (5)	С6—Н6	0.93
Ni1—S1	2.2058 (4)	С7—С8	1.366 (3)
Ni1—S2	2.2133 (5)	C8—C9	1.380 (3)
Ni1—S2 ⁱ	2.2133 (5)	C8—H8	0.93
S1—C1	1.7201 (17)	C9—C10	1.387 (2)
S2—C1	1.7163 (15)	С9—Н9	0.93
N1—C3	1.142 (2)	C10-C11	1.507 (2)
N2—C4	1.145 (2)	C11—H11A	0.97
N3—C16	1.334 (2)	C11—H11B	0.97
N3—C12	1.336 (2)	C12—C13	1.368 (3)
N3—C11	1.491 (2)	C12—H12	0.93
F1—C7	1.357 (2)	C13—C14	1.366 (3)
C1—C2	1.377 (2)	С13—Н13	0.93
C2—C3	1.420 (2)	C14—C15	1.364 (3)
C2—C4	1.423 (2)	C14—H14	0.93
C5—C6	1.382 (2)	C15—C16	1.378 (3)
C5—C10	1.385 (2)	C15—H15	0.93
С5—Н5	0.93	С16—Н16	0.93

1.365 (3)		
180	С7—С8—Н8	120.9
101.201 (18)	С9—С8—Н8	120.9
78.799 (19)	C8—C9—C10	120.87 (16)
78.799 (18)	С8—С9—Н9	119.6
101.201 (18)	С10—С9—Н9	119.6
180	C5—C10—C9	118.90 (16)
85.66 (5)	C5-C10-C11	120.24 (15)
85.51 (6)	C9—C10—C11	120.76 (15)
120.66 (15)	N3—C11—C10	109.83 (13)
119.73 (15)	N3—C11—H11A	109.7
119.50 (14)	C10-C11-H11A	109.7
125.81 (13)	N3—C11—H11B	109.7
124.73 (12)	C10-C11-H11B	109.7
109.42 (9)	H11A—C11—H11B	108.2
120.24 (15)	N3—C12—C13	120.07 (17)
121.83 (14)	N3—C12—H12	120.0
117.91 (15)	C13—C12—H12	120.0
178.5 (2)	C14—C13—C12	120.18 (19)
178.26 (19)	C14—C13—H13	119.9
120.72 (16)	С12—С13—Н13	119.9
119.6	C15—C14—C13	119.22 (17)
119.6	C15-C14-H14	120.4
118.37 (16)	C13—C14—H14	120.4
120.8	C14—C15—C16	119.12 (17)
120.8	C14—C15—H15	120.4
118.43 (17)	С16—С15—Н15	120.4
118.65 (16)	N3—C16—C15	120.75 (18)
122.93 (17)	N3—C16—H16	119.6
118.20 (16)	С15—С16—Н16	119.6
	1.365 (3) 180 101.201 (18) 78.799 (19) 78.799 (18) 101.201 (18) 180 85.66 (5) 85.51 (6) 120.66 (15) 119.73 (15) 119.50 (14) 125.81 (13) 124.73 (12) 109.42 (9) 120.24 (15) 121.83 (14) 117.91 (15) 178.5 (2) 178.26 (19) 120.72 (16) 119.6 119.6 119.6 119.6 118.37 (16) 120.8 120.8 120.8 118.43 (17) 118.65 (16) 122.93 (17) 118.20 (16)	1.365(3) 180 $C7C8H8$ $101.201(18)$ $C9C8H8$ $78.799(19)$ $C8C9C10$ $78.799(18)$ $C8C9H9$ $101.201(18)$ $C10C9H9$ 180 $C5C10C11$ $85.66(5)$ $C5C10C11$ $85.51(6)$ $C9C10C11$ $120.66(15)$ $N3C11H11A$ $119.73(15)$ $N3C11H11A$ $119.50(14)$ $C10C11H11B$ $124.73(12)$ $C10C11H11B$ $109.42(9)$ $H11AC11H11B$ $120.24(15)$ $N3C12C13$ $121.83(14)$ $N3C12H12$ $17.91(15)$ $C13C12H12$ $178.5(2)$ $C14C13H13$ $120.72(16)$ $C12C13H13$ $120.72(16)$ $C15C14H14$ $118.37(16)$ $C13C14H14$ 120.8 $C14C15H15$ $118.43(17)$ $C16C15H15$ $118.43(17)$ $C16C15H15$ $118.43(17)$ $C16C15H15$ $118.20(16)$ $C15C16H16$

Symmetry codes: (i) -x+2, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C12—H12···N1 ⁱⁱ	0.93	2.59	3.471 (3)	157
C15—H15…N2 ⁱⁱⁱ	0.93	2.60	3.337 (3)	136
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z+2$; (iii) $-x+1$, $-y+2$, $-z+1$.				

Fig. 2